top of page


Our CellSense technology  is  designed  to  interfere  with  the  complex  biological response involved in the foreign body reaction and subsequent formation of fibrotic tissue around the implantable medical device. 

It comprises surface micro-engineered bio-synthesized cellulose which disrupts the process of cell adhesion and deposition of fibrous tissue, through a combination of rationally designed physio-chemical and surface characteristics.

The foreign body response begins with adsorption of various proteins to the surface of  the  implant. This non-specific layer of proteins labels the device as foreign to the body and triggers  high  neutrophil  activity  and  release  of  soluble  factors.

Subsequently macrophages and monocyte precursor cells are recruited. Given the impossibility to kill the foreign object, the immune system starts the recruitment of fibroblasts, with the aim of encapsulating the foreign material in a newly deposited collagen matrix. The resulting fibrotic capsule creates a thick physical and physiological barrier between the implant and the host tissue, leading to several clinical problems.


Biosynthesized Cellulose

Ultra-pure cellulose produced by a biotech fermentation process comprising a network of cellulose nanofibres that strongly resembles the microstructure of human connective tissue.

​The hydrophilic nature of the biocellulose provides a physiological environment as the water layer is the first to interact with host tissue.

Rationally Designed Microtopography

The unique surface topography consisting of an isotropic hexagonal distribution of micro-sized wells, disrupts adhesion and activation of immune cells through a process called mechano-transduction.

Specific surface topographies can be rationally designed to promote different cell responses (such as cell differentiation or migration).

CellSense Platform

Hylomorph's patented production process can manufacture CellSense material in large volumes with a virtually unlimited variety of forms and dimensions.

All Videos
Watch Now

The CellSense technology is the foundation for Hylomate. Extensive R&D has been undertaken to gather evidence on its safety and performance in vitro and in vivo, and these endeavors have been published in a number of peer-reviewed scientific journals.


In vitro studies have shown the reliability of the production process as well as the effectiveness of the technology to significantly reduce the inflammatory process when compared to other materials and surfaces [1-2]. 

Long term in vivo studies have shown a significant reduction of foreign body reaction and fibrotic encapsulation when combined with a variety of implantable medical devices [3].


[1] S. Bottan et al., “Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB),” ACS Nano, vol. 9, no. 1, pp. 206–219, 2015.

[2] F. Robotti et al., “A micron-scale surface topography design reducing cell adhesion to implanted materials,” Sci. Rep., vol. 8, no. 1, p. 10887, Dec. 2018.

[3] F. Robotti et al, "Microengineered biosynthesized cellulose as anti-fibrotic in vivo protection for cardiac implantable electronic devices," Biomaterials, vol. 229, 2020.

bottom of page